Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Mikrochim Acta ; 189(8): 287, 2022 07 19.
Article in English | MEDLINE | ID: covidwho-1935815

ABSTRACT

A dual recognition biosensor was developed via introducing aptamer strings and molecular imprinting polymer (MIP) for the selective detection of intact SARS-CoV-2 virus based on screen printed carbon electrode (SPCE) modified with nickel-benzene tricarboxylic acid-metal-organic framework (Ni3(BTC)2 MOF) synthesized by in situ growth method, SARS-CoV-2 S protein-specific amino-aptamer and electropolymerization of dopamine (ePDA). The proposed biosensor showed an excellent linear relationship between charge transfer resistance (Rct) and increase in virus concentration in the range 10 to 108 plaque-forming units/mL (PFU/mL) with a low detection limit of 3.3 ± 0.04 PFU/mL and response time of 20 min. Compared with single-element sensors (aptamer or MIP), it showed higher selectivity for  the SARS-CoV-2 virus and facilitated detection in real samples.


Subject(s)
COVID-19 , Molecular Imprinting , COVID-19/diagnosis , Humans , Molecular Imprinting/methods , Polymers/chemistry , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
2.
Bioelectrochemistry ; 146: 108106, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-1828002

ABSTRACT

The development of advanced electrode materials and the combination of aptamer with them have improved dramatically the performance of aptasensors. Herein, a new architecture based on copper hydroxide nanorods (Cu(OH)2 NRs) are directly grown on the surface of screen printed carbon electrode (SPCE) using a two-step in situ, very simple and fast strategy and was used as a high-performance substrate for immobilization of aptamer strings, as well as an electrochemical probe to development a label-free electrochemical aptasensor for SARS-CoV-2 spike glycoprotein measurement. The Cu(OH)2 NRs was characterized using X-ray Diffraction (XRD) and electron microscopy (FESEM). In the presence of SARS-CoV-2 spike glycoprotein, a decrease in Cu(OH)2 NRs-associated peak current was observed that can be owing to the target-aptamer complexes formation and thus blocking the electron transfer of Cu(OH)2 NRs on the surface of electrode. This strategy exhibited wide dynamic range in of 0.1 fg mL-1 to 1.2 µg mL-1 and with a high sensitivity of 1974.43 µA mM-1 cm-2 and low detection limit of 0.03 ± 0.01 fg mL-1 of SARS-CoV-2 spike glycoprotein deprived of any cross-reactivity in the presence of possible interference species. In addition, the good reproducibility, repeatability, high stability and excellent feasibility in real samples of saliva and viral transport medium (VTM) were found from the provided aptasensor. Also, the aptasensor efficiency was evaluated by real samples of sick and healthy individuals and compared with the standard polymerase chain reaction (PCR) method and acceptable results were observed.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , COVID-19 , Nanotubes , Aptamers, Nucleotide/chemistry , Biosensing Techniques/methods , Electrochemical Techniques/methods , Electrodes , Humans , Reproducibility of Results , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
3.
Microchem J ; 170: 106718, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1347761

ABSTRACT

As a promising approach for serological tests, the present study aimed at designing a robust electrochemical biosensor for selective and quantitative analysis of SARS-CoV-2-specific viral antibodies. In our proposed strategy, recombinant SARS-CoV-2 spike protein antigen (spike protein) was used as a specific receptor to detect SARS-CoV-2-specific viral antibodies. In this sense, with a layer of nickel hydroxide nanoparticles (Ni(OH)2 NPs), the screen-printed carbon electrode (SPCE) surface was directly electrodeposited to ensure better loading of spike protein on the surface of SPCE. The differential pulse voltammetry (DPV) showed signals which were inversely proportional to the concentrations of the antibody (from 1 fg mL-1 L to 1 µg mL-1) via a specific and stable binding reaction. The assay was performed in 20 min with a low detection limit of 0.3 fg mL-1. This biodevice had high sensitivity and specificity as compared to non-specific antibodies. Moreover, it can be regarded as a highly sensitive immunological diagnostic method for SARS-CoV-2 antibody in which no labeling is required. The fabricated hand-held biodevice showed an average satisfactory recovery rate of ~99-103% for the determination of antibodies in real blood serum samples with the possibility of being widely used in individual serological qualitative monitoring. Also, the biodevice was tested using real patients and healthy people samples, where the results are already confirmed using the enzyme-linked immunosorbent assay (ELISA) procedure, and showed satisfactory results.

4.
Mikrochim Acta ; 188(3): 105, 2021 03 02.
Article in English | MEDLINE | ID: covidwho-1152017

ABSTRACT

Severe acute respiratory syndrome SARS-CoV-2 has caused a global pandemic starting in 2020. Accordingly, testing is crucial for mitigating the economic and public health effects. In order to facilitate point-of-care diagnosis, this study aims at presenting a label-free electrochemical biosensor as a powerful nanobiodevice for SARS-CoV-2 spike protein detection. Utilizing the IgG anti-SARS-CoV-2 spike antibody onto the electrode surface as a specific platform in an ordered orientation through staphylococcal protein A (ProtA) is highly significant in fabricating the designed nanobiodevice. In this sense, the screen-printed carbon electrode modified with Cu2O nanocubes (Cu2O NCs), which provide a large surface area in a very small space, was applied in order to increase the ProtA loading on the electrode surface. Accordingly, the sensitivity and stability of the sensing platform significantly increased. The electrochemical evaluations proved that there is a very good linear relationship between the charge transfer resistance (Rct) and spike protein contents via a specific binding reaction in the range 0.25 fg mL-1 to 1 µg mL-1. Moreover, the assay when tested with influenza viruses 1 and 2 was performed in 20 min with a low detection limit of 0.04 fg mL-1 for spike protein without any cross-reactivity. The designed nanobiodevice exhibited an average satisfactory recovery rate of ~ 97-103% in different artificial sample matrices, i.e., saliva, artificial nasal, and universal transport medium (UTM), illustrating its high detection performance and practicability. The nanobiodevice was also tested using real patients and healthy samples, where the results had been already obtained using the standard polymerase chain reaction (PCR) procedure, and showed satisfactory results. Graphical abstract.


Subject(s)
Biosensing Techniques/methods , COVID-19 Testing/methods , COVID-19/diagnosis , Copper/chemistry , Electrochemical Techniques/methods , Nanostructures/chemistry , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/analysis , Antibodies, Viral/metabolism , Electrodes , Humans , Immunoassay/methods , Immunoglobulin G/metabolism , Protein Binding , SARS-CoV-2/metabolism , Sensitivity and Specificity , Staphylococcal Protein A/chemistry , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL